If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x^2+48x-39=0
a = -12; b = 48; c = -39;
Δ = b2-4ac
Δ = 482-4·(-12)·(-39)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{3}}{2*-12}=\frac{-48-12\sqrt{3}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{3}}{2*-12}=\frac{-48+12\sqrt{3}}{-24} $
| p/8+50=56 | | 10=x −15 | | 5n+1/2=7/4 | | c/5+37=43 | | 4x+8=3x–5 | | 14t+6t+8t-17t+6=17 | | 5x+90=65 | | 46m-45m-m+5m+9m=42 | | (m+2)/2=5 | | 45y-10y-35y+8y=40 | | 6c-3c-c=20 | | 2x+12=20+2x | | 2s+5s-6s+3s-1=15 | | x18=22 | | 16u-11u-4u=11 | | 7y-1=50 | | 9x+5=78 | | 90+(33x-9)=180 | | 8a-4a-3a=6 | | 17z+2z-15z-z=6 | | 4(5x-7)-6x+8=36 | | 8b-b+5b-5b-1=20 | | r^2+3r-7=-4 | | -x-14=5 | | 5(x+90)=65 | | 10m^2=4 | | 5(x+90=65 | | -4n^2+3n-7=-9 | | 4w-w-w-1=9 | | -7k^2+10k+15=6 | | 8m+5m-3m=10 | | 5h-7=4h+3 |